November 10-12, 2023 | Brisbane, Australia

Keynote Speakers


 

Prof. Dennis Y.C. Leung
University of Hong Kong, China
Head of the department specializing in environmental pollution control and renewable & clean energy

 

Biography | Prof. Dennis Y.C. Leung received his BEng (1982) and PhD (1988) from the Department of Mechanical Engineering at the University of Hong Kong. He had worked with the Hongkong Electric Co., Ltd. for five years heading the air pollution section of the company before joining the University of Hong Kong in 1993. Professor Leung is now a full professor and Head of the Department of Mechanical Engineering specializing in environmental engineering and renewable & clean energy. He has published more than 500 articles in these two areas including 350+ peer reviewed SCI journal papers. His current h-index is 82 and total citations are 40,000+. He is one of the top 1% highly cited scientists in the world in energy field since 2010 (Essential Science Indicators) and named as a Highly Cited Researcher by Clarivate Analytics for the past six years consecutively from 2017 to 2022. Prof. Leung has delivered more than 80 keynote and invited lectures in many international conferences.

 

Keynote title: Carbon mitigation: Development and current status of carbon capture, utilization and storage (CCUS) Technologies

Abstract: Global warming and climate change concerns have triggered global efforts to reduce the concentration of atmospheric carbon dioxide (CO2). Although renewable energy has been widely developed in many countries, carbon capture, utilization and storage (CCUS) is considered a crucial strategy for meeting CO2 emission reduction targets in short to medium term. In this talk, various aspects of CCUS are reviewed and discussed including the state of the art technologies for CO2 capture, separation, transport, usage, storage, and life cycle analysis. The selection of specific CO2 capture technology heavily depends on the type of CO2 generating plant and fuel used. There are multiple hurdles to CCUS deployment including the absence of a clear business case for CCUS investment and the absence of robust economic incentives to support the additional high capital and operating costs of the whole CCUS process. The challenges and prospects of various carbon mediation measures, and their current status will be discussed in this talk.

 

 

 

 

 

Prof. Roland Kallenborn
Norwegian University of Life Sciences, Norway
UArctic Chair in Arctic Environmental Pollution Research

 

Biography | Professor Roland Kallenborn is a senior scientist and university teacher in the field of organic analytical chemistry, environmental chemistry and environmental risk assessment.
Kallenborn is also affiliated as adjunct professorship in Arctic Technology to the University Centre in Svalbard (UNIS) and as external supervisor for graduate and post graduate students, to the Harbin Institute of Technology (HIT, China).
– The steadily increasing number of priority pollutants in the Arctic requires new analytical methods and detection strategies. The UArctic network will help to coordinate and harmonize current international efforts to investigate today’s pollutant profiles in the Arctic, says Kallenborn.
As UArctic chair for Environmental pollution research, Kallenborn will focus on developing circum-Arctic academic networks for graduate and post -graduate education of future experts in Arctic environmental chemistry. His scientific focus will be on fata and distribution profiling of organic Arctic pollutants including Chemicals of Emerging Arctic Concern (CEACs).

 

Keynote title: Organic pollutants as sustainability indicators for new circular bioeconomy strategies - Presence, remediation and consequences

Abstract: In order to reduce the anthropogenic footprint in the bio- and geosphere and for ensuring a sustainable future for mankind, circular bio-economy strategies, recycling and reuse of both non-renewable and renewable resources mainly derived from organic residues today considered an important prerequisite for urban and industrial planning. Thus, applying, reusing, and refining organic residues, previously considered as wastes, is an important research and societal focus on the national and international level. In many countries, biowastes are currently applied as a preferred soil amendment and fertilizer for the effective recycling the nutrients incl. nitrogen and phosphorous in modern sustainable agricultural applications. However, such soil amendments may also lead to dispersal and accumulation of contaminants in agricultural soils if not properly monitored and treated. From soils, these contaminants may be absorbed and accumulated into food and fodder plants, ultimately resulting in animal and human exposure. The development of suitable production and refinement pathways for recycling and renewable energy production in recent years still does not take potential associated pollutant transfer sufficiently into account when commercializing their refined products. Various technologies have been promoted and applied with the potential for uncontrolled emission of anthropogenic pollution. For instance, the use of biological (waste) materials in anaerobic digestion processes, both as decentralized farm based as well as municipal biogas plants is currently marketed as a new pathway for sustainable energy production. Hence, among others, organic household waste, as substrates for biogas production has increased significantly in Europe, Asia, and the North Americas. This development leads not only to an increasing amount of bioenergy produced but also to a considerable amount of production waste to be handled properly as starting material for new products. Also, recent development in large-scale Urban Agriculture (UA) for the greening of large cities is expected to develop into an important new pathway for bioeconomic production in an urban context. AS part of UA-related urban sustainable strategies, agricultural substrate soil, fertilizer, and infrastructures from the respective urban areas are utilized or reused. However, pollutant-associated aspects of the soils and the potential for uptake in commercially available consumer products are often not sufficiently implemented in the current international UA and other planning strategies. Possible consequences of organic pollutants in UA installations and commercially distributed products will be discussed as case studies in the presentation.

 

 

 

 

 

Prof. Sue Charlesworth
Coventry University, Coventry, United Kingdom

 

Biography | Susanne Charlesworth is a Professor in Urban Physical Geography at Coventry University in the Centre for Agroecology, Water and Resilience. She is the author of more than 70 peer reviewed journal articles on urban pollution and Sustainable drainage (SuDS), many book chapters, and has co-edited books on Sustainable Drainage, urban pollution, aquatic sedimentology and water resources. She collaborates with groups internationally and has given papers at international conferences worldwide
SuDS seemed like the logical move from my earlier interest in urban sedimentology and geochemistry associated with rivers, streams, soil and street dusts. These materials can be highly polluted and in developed countries 85% of people live in urban areas, worldwide >50% live in cities, thus the impacts can be far-reaching. With climate change and the problems associated with greenhouse gases, there needs to be a means of tackling these issues with a multiple benefit, flexible approach, and SuDS can offer such a management strategy. The role of Green Infrastructure and Ecosystem Services provision led to an interest in Natural Flood Management (NFM) by Working with Natural processes at the catchment scale. Latterly, Sue has become particularly interested in the design and installation of SuDS and NFM alongside Water, Sanitation and Health in informal settlements, favelas and refugee camps. There is the potential to address disease vecors such as mosquitos by managing greywater disposal and stormwater management using SuDS approaches and thus reducing the incidence of viruses causing zika, dengue or chikungunya. Its uptake in England and Wales is less than would be hoped, so through my research I would like to be able to be instrumental in providing the information necessary to encourage its uptake by practitioners and stakeholders.
Research Interests | SuDS; design and installation of SuDS in informal settlements, favelas and refugee camps; role of Green Infrastructure; Ecosystem Services Provision; Urban lake and river sediments; Urban Physical Processes: Urban Hydrology; The risk to children’s health of contaminants in playground material; Efficiency of porous paving in degrading oil and dealing with metal pollutants

 

Keynote title: The failure of UN Sustainable Development Goal 6: where are the refugee camps and informal settlements?

 

Abstract: The provision of Water, Sanitation and Health (WASH) is recognised by the UN as a human right. However, drainage is not specifically included, being essentially hidden in “Sanitation”. The lack of drainage infrastructure and household wastewater management leads to flooding and can affect quality of life, human health and the surrounding environment. This is particularly true in the most vulnerable of populations who live in informal settlements and refugee camps. The 2023 Synthesis Report for SDG6 includes 3 mentions of household wastewater, however, just one mention of drainage and nature-based solutions, but nothing at all around informal settlements or refugee camps, even though its overall ambition is, by 2030, to ensure water and sanitation for all.

Informal settlements are ubiquitous in developing countries. They are constructed in areas which are otherwise unsuitable for formal habitation, i.e. on steep slopes or on low lying land with high groundwater tables. On the other hand, refugee camps are set up formally under conditions of extreme crisis, but similar to informal settlements, drainage and greywater management are initially generally absent. Conventional infrastructure for water management such as the installation of a wastewater treatment plant would not be relevant in such contexts; what is needed is an approach that is multiple benefit, does not apply additional chemicals and is flexible such as Nature Based Solutions or Sustainable Drainage Systems.

This paper shows how these approaches can be used in case studies in South Africa and the Kurdistan Region of Iraq.